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ABSTRACT

Active nematics are a class of far-from-equilibrium materials
characterized by local orientational order of force-generating,
anisotropic constitutes; they include bacterial films, animal
cell cultures, and synthetic systems comprised of reconsti-
tuted biomolecules. Actively generated stresses induced in-
stabilities that create topological disclinations, local regions
of disorder characterized by their winding number. These
motile defects, perpetually nucleate and annihilate, exhibit-
ing complex spatiotemporal dynamics. Defect dynamics are
influenced by both the material properties of the nematic and
boundary conditions; their dynamics can therefore be used as
a rheological tool for gaining a deeper understanding of the
material. To rapidly and accurately identify defects we devel-
oped a novel defect detection technique using deep neural net-
works. Our approach combines YOLO for fast defect-region
proposal and a defect locator built from a two-column deep
convolutional neural network. Our approach significantly im-
proves the overall defect detection accuracy and localization
when compared to a previously deployed defect detection al-
gorithm that was developed using traditional image process-
ing techniques.

Index Terms— Active Nematics, Topological Defect De-
tection, Deep Neural Network

1. INTRODUCTION

1.1. Two-Dimensional Confined Active Nematics

Far-from-equilibrium materials are a broad class of internally-
driven, energy-consuming systems studied by the soft con-
densed matter community. An important subclass are active
nematic materials. Passive nematic liquid crystals are well
known for their use in display technologies and are comprised
of elongated constituent molecules that exhibit high orien-
tational order [1]. Nematics can contain localized regions
of orientational disorder known as defects (Fig. 1) that are
named according to their topological winding number [2]. In
the absence of driving forces, defects in a nematic will an-
neal over time through molecular reorientation. By contrast,
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the constituents of far-from-equilibrium nematics such as cell
cultures [3, 4], bacterial suspensions [5, 6], filamentous bio-
films [7], synthetic microtubule-based materials [8, 9] and
others [10, 11] possess internal stresses that spontaneously
produce topological defects through dynamic instabilities that
produce ±1/2 defect pairs. Active stress imbues each defect
type with unique dynamics (Fig. 1): the comet-shaped +1/2
defects are self-propelling while the three-fold symmetry of
the -1/2 defects creates an active flows that result in no net
translation of the structure.

+1/2 -1/2
topological defects:

50μm

Fig. 1: Left: Fluorescently labeled active microtubule suspension
confined to a 300 µm well. Topological defects with + 1

2 and − 1
2

defects labeled by green arrows and red dots with three prongs, re-
spectively. The material circulate clock-wise (cyan arrow). Right:
Schematic representation of topological defects and their idealized
active flows (cyan arrows) [10, 11].

Experimental observations [9, 12, 13, 14] and theoretical
predictions [15, 16] show that hydrodynamic interactions be-
tween defects gives rise to striking spatio-temporal dynam-
ics in the form of nucleation and annihilation, and complex
trajectories. Geometric confinement greatly influences these
dynamics, and can tame the otherwise turbulent flows into
system-sized vortices that exhibit complex periodic patterns
[14]. In order to characterize these dynamical structures and
derive theories to describe them, researchers need to analyze
a huge volume of videos of active nematics to detect and trace
patterns (e.g., ±1/2 defects), which is prohibitively time con-
suming. Hence, an automatic tool for rapid and robust defect
detection is essential.

In this work, we developed a deep neural network based
approach on fluorescence microscopy images of an extensile
active nematic system, which is composed of microtubules
and motor proteins in circular disks [8, 9, 14]. Our approach



is applicable to other nematic materials.

1.2. Traditional Defect Detection Algorithm

We previously developed a two-step analysis method using
traditional image processing techniques. First, the director
field tangent to microtubule bundles is identified. This field
can be measured directly using polscope microscopy [9] or
computed through image processing [14]. In the latter, the im-
age gradient is calculated and the principal components of the
second rank tensor G = ∇I ⊗∇I are extracted for every pixel.
The eigenvector associated with the smallest eigenvalue cor-
responds to the local direction of the microtubule fibers n. In
the second step, the signed winding number w = 1

2π

∮
∂θ
∂x · dx

(where θ = tan−1 (
ny/nx

)
), is calculated over all image re-

gions using a pre-defined window-size [2]. The integral is
identically zero unless the director field contains a singular
point [9, 12]. This algorithm performs reasonably well in
detecting both ±1/2 defects; however, performance depends
on the quality of the director field that can be extracted. In
practice, the field is an imperfect representation of the micro-
tubule orientation. Overexposed regions, unfocused regions,
and microtubule material extending beyond the confinement
plane are common challenges that lead to false positives and
false negatives. While careful filtering of the director field
can ameliorate these issues, this requires dataset-dependent
tuning and long processing time.

2. METHODS

Fig. 2: The proposed two-stage defect detection system. In the
first stage, a YOLO model is trained to propose candidate defect-
containing regions. In the second stage, two CNNs (coarse and fine
scanners) are integrated to accurately detect defects in the regions
proposed by YOLO.

The task of defect detection is special in the sense that
defects are singular points in an image with no clear bound-
aries. Because of this characteristic, existing object detection

techniques tend to localize defects poorly. Therefore, we de-
veloped a two-stage approach [Fig. 2]. The 1st stage trains
a YOLO model [17] for quickly proposing the rough defect-
containing regions in an image. Several similar models have
been developed in the recent years including R-CNN [18, 19]
and SSD [20]. We chose YOLO because it produced much
fewer false positives in our data and is the fastest among all
state-of-the-art methods. In the 2nd stage, a two-column con-
volutional neural network (CNN) is trained to accurately lo-
calize defects in the regions proposed by the YOLO model.
Each column is a CNN. One of them (Coarse Scanner) is
trained to distinguish defects from general non-defect regions,
and the other one (Fine Scanner) is trained to differentiate
defects from their vicinities. The output of the two-column
CNN will be integrated by an Integrator Network trained to
optimize the prediction of defect locations.

2.1. Training & Testing Data

We manually labeled the positions of ±1/2 defects in 8300 im-
ages from 9 experimental videos, and divided them randomly
into 6600 for training, 567 for validation, 1133 for testing
(samples of training and testing data are included in supple-
mentary materials). The location of a +1/2 defect is labeled
at the point where the orientation of the materials change the
most sharply, and the location of a -1/2 defect is labeled at the
center of its triangular material-devoid region (Fig. 1). The
size of +1/2 defects vary significantly. For example, in Fig.
3, there are four +1/2 defects, with defect 1 appearing dras-
tically different (much bigger than) from defects 2-4. The
regular bounding box used for defining most +1/2 defects is
too small to cover defect 1. Hence, we created a separate class
for “open” +1/2 defects like defect 1 in Fig. 3 and gave it a
bigger bounding box (1/3 bigger than other classes).

Fig. 3: Varying sizes of +1/2 defects. Defect 1 is an “open” +1/2
defect that is much larger than other “closed” +1/2 defects 2, 3, 4.

Due to the topological constraints imposed by parallel
alignment of the nematic along the boundary [2], the system
maintains a total topological charge of +1, which requires ex-
actly two more +1/2 defects than -1/2 defects in each frame,
leading to unbalanced training data. Specifically, our training
set possesses 58536 samples of +1/2 defect and 24518 sam-



ples of -1/2 defect. To address this issue and also increase
model robustness, we adopted several data augmentation
techniques: 1) random rotation; 2) random horizontal and
vertical flipping; 3) Gaussian noises, salt pepper noises,
and speckle noises. In addition, a circular mask was applied
to black out fringe region (devoid of materials) of a defect
bounding box.

2.2. Improve Defect Localization

In the prediction results of YOLO, we observed poor local-
ization performance manifested by drastically shifting bound-
ing boxes across consecutive frames in a video. Moreover,
in the predicted bounding boxes containing defects, the dis-
tances between defect locations to the centers of the bounding
boxes are large (summarized in Fig. 6). To more precisely
locate defects, we trained a Defect Locator – a two-column
deep neural network composed of two CNNs integrated by
a subnetwork with 2 fully-connected layers (see the network
within the dash rectangle in the bottom of Fig. 2). The Defect
Locator is used to scan each region proposed by YOLO to
produce a confidence map of defects whose local maxima are
extracted as the defect locations. Because the varying sizes of
nematic systems and image resolutions, we use the normal-
ized distance (i.e., the portion of the image size) to report the
localization results unless otherwise noted in the rest of the
paper. For example, a normalized distance of 0.075 is around
52 pixels in a typical 700×700 image.

2.2.1. Training the Defect Locator

The two CNNs in the Defect Locator were trained to dis-
tinguish 4 classes: “closed” +1/2 defects, “open” +1/2 de-
fects, -1/2 defects, backgrounds (i.e., image regions whose
center areas are not defects). Both CNNs are ResNet-34 [21].
They were trained differently in how their background train-
ing data was chosen. The background training data of the 1st
CNN were sampled uniformly from the whole image (exclud-
ing those within 0.02 normalized distance to defects), which
trains the 1st CNN to eliminate most non-defect-containing
regions. Hence, we name this CNN the Coarse-Scanner. The
background training data of the 2nd CNN was sampled in the
vicinity of defects (within 0.02-0.07 normalized distance to
defects), which was used to train the 2nd CNN to determine
if a region has a defect close to its center. We name the 2nd
CNN as the Fine-Scanner. The outputs of both CNNs are then
integrated by a three-layer fully connected network. ReLU
[22] was used in the first two hidden layers (each layer con-
tains 100 neurons), and softmax was used in the output layer
containing four neurons.

To deal with unbalanced training data, equal number of
“closed” +1/2 defects, “open” +1/2 defects, -1/2 defects and
background regions were sampled to train the Fine-Scanner
in each epoch. In each training epoch of the Coarse-Scanner,
since the background set is much larger than the defect sets,

we randomly sampled backgrounds to be four times the
amount of the rest classes, and adjusted the weights in loss
function to 1:1:1:4 for “closed” +1/2 defect, “open” +1/2 de-
fect, -1/2 defect, and background, respectively. Both Coarse-
/Fine-Scanners were trained using Adam [23] to minimize
the cross-entropy loss function with a L2 regularization at
the level of 1e-5. Initial learning rates was 0.00025, which
was reduced by half every 100 epochs. After training the
Coarse-/Fine-Scanners, we froze their parameters and fed
their outputs to train the Integrator subnetwork. In each
epoch, the defect training data was sampled in the same man-
ner to the above, while the background data was sampled
from bounding boxes generated by YOLO but not within
a 0.02 normalized distance to defects. When training the
Integrator subnetwork, Stochastic Gradient Decent with Mo-
mentum was used to minimized the cross-entropy loss. The
initial learning rate was 0.01 and was reduced by half every
10 epochs. The total number of training epochs is 50.

We used the validation test to tune the confidence thresh-
old of our YOLO model to obtain a high recall rate (89.9%).
During detection, an input image is first filtered by the trained
YOLO model to generate multiple bounding boxes. Each of
these bounding boxes is then scanned in parallel by the De-
fect Locator to extract the locations of defects. A fix window
size of 0.045 normalized distance and a stride number of 2 are
used for slide-window scanning to produce a confidence map.

3. EXPERIMENTAL RESULTS

3.1. Detection Performance

Ground	Truth
Predictions

RED -1/2	Defects
GREEN				+1/2	Defects

TP					True	Positive
FP					False	Positive

FN					False	Negative
TN					True	Negative

Fig. 4: Exemplar test results of our approach. The predictions and
ground truth are labeled in circles and pentagrams, respectively. The
+1/2 and -1/2 defects are labeled in green and red, respectively.

The performance of our approach was evaluated by re-
call, precision and F2-score, and was compared with those
of the traditional method and the YOLO alone method in Ta-
ble 1. We considered a prediction to be correct if there was
a defect of the same class within a normalized distance of
0.075. When tuning our 2-stage approach and the YOLO
alone method, we used the validation test to select the thresh-
olds on the LogSoftMax outputs to maximize their F2-scores
in validation. The traditional approach needed to be fine-
tuned manually for each video using several of its carefully



Traditional YOLO Ours
precision +1/2 0.881 0.784 0.831

recall +1/2 0.601 0.845 0.815
F2-score +1/2 0.714 0.813 0.823
precision -1/2 0.361 0.402 0.591

recall -1/2 0.762 0.396 0.555
F2-score -1/2 0.490 0.399 0.572

F2-score overall 0.637 0.688 0.749

Table 1: Compare the defect detection performances of the tradi-
tional method, YOLO, and our approach. Defect types are indicated
by +1/2 and -1/2.

chosen representative frames. Table 1 shows that our ap-
proach leads the other two approaches in all F2-score mea-
surements. Sample test videos with defect annotations and
detection results are included in supplementary materials.

As shown in Fig. 5, all methods performed less accurately
in the area close to the boundary of the confining disk. We be-
lieve the poor performances of our approach and the YOLO-
alone method were due to the following reasons. (1) Defects
appear less frequently in the outer region. For example, in
our data, only about 22% defects are located at the outer re-
gions. The outer region has the largest area but contains the
least number of defects. The lower detection performance is
expected because of relatively insufficient number of training
samples. (2) Nucleation and annihilation happen more often
near the boundary, and hence make it harder to detect defects.
(3) Defects near the boundary are smaller in size and less clear
in appearance with high variations.

Traditional YOLO Our	Approach

Fig. 5: Compare the F2-scores in three different regions (outer-
yellow, middle-red, and inner-green) of the test images. YOLO in-
dicates the YOLO-alone method.

3.2. Defect Localization Test

We also compared the localization performances of our ap-
proach, the YOLO-alone method, and the traditional algo-
rithm (see Figure 6). The defect location detected by the
YOLO-alone method was calculated as the center of the cor-
responding rectangle. A normalized distance of 0.075 is used
to decide if a detection is within a correct range of the ground
truth. Our approach performed significantly better than two
other approaches.

Method
Mean

Distance

YOLO 0.036

Traditional 0.029
Our	Approach 0.015

Fig. 6: Compare localization performances. YOLO indicates the
YOLO-alone method.

4. CONCLUSION AND DISCUSSION

Our deep-learning based approach outperformed the tradi-
tional approach in both detection accuracy and localization.
Once trained, our model can be robustly applied to new data
without needing to fine-tune for individual datasets. The
significant improvement in localizing defects will greatly fa-
cilitate quantifying active nematic dynamics. We observed
that our detection mistakes happened more often during the
nucleation or annihilation of a defect (see Fig. 7). Identi-
fying the exact frame when a defect nucleates or annihilates
is challenging even for human annotators. We will improve
our method in the future by increasing training data and/or
expanding our model to include a subnetwork to handle this
special category. Recently, experimental data from 3D ac-
tive nematics has been collected in which topological defects
are lines and loops instead of singularity points as in 2D
nematic systems. Robust 3D defect detection method is ur-
gently needed. More generally, many experiments in the
field of soft matter involve identifying patterns (objects) in
images/videos. Our work demonstrates that deep-learning is
a viable approach to analyze these experimental data.

Ground	Truth Prediction

Fig. 7: The annihilation process of an +1/2 defect. In the 1st and
last frames, our detection results match the manual annotations. In
the 2nd and 3rd frames, our approach detected a +1/2 defect which
however was not manually confirmed.
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